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SUMMARY
Characterization of normal breast stem cells is important for understanding their role in breast development and in breast cancer. How-

ever, the identity of these cells is a subject of controversy and their localization in the breast epithelium is not known. In this study, we

utilized a novel approach to analyze the morphogenesis of mammary lobules, by combining one-dimensional theoretical models and

computer-generated 3D fractals. Comparing predictions of thesemodels with immunohistochemical analysis of tissue sections for candi-

date stem cell markers, we defined distinct areas where stem cells reside in themammary lobule. An increased representation of stem cells

was found in smaller, less developed lobules compared to larger,moremature lobules, withmarked differences in the gland of nulliparous

versus parous women and that of BRCA1/2 mutation carriers versus non-carriers.
INTRODUCTION

The mammary gland differs from other organs in that it

continues to undergo morphogenesis postnatally, with

paramount changes in tissue structure and cell population

dynamics occurring during developmental windows such

as puberty, pregnancy, and menopause. These processes

are likely supported by a population of mammary stem

cells that resides within the tissue. Regeneration of the

entire gland from one single cell in multiple passages

together with lineage-tracing experiments in vivo consti-

tute compelling evidence for the existence of stem cell pop-

ulations in the mouse mammary gland (Prater et al., 2014;

Rios et al., 2014; Shackleton et al., 2006). However, owing

to obvious experimental limitations, there is no direct

definitive proof for the existence of a bona fide stem cell

population active in the adult human mammary gland.

Xenotransplantation of human mammary epithelium in

cleared humanized mammary fat pads or under the renal

capsule of immunodeficient mice allows in vivo out-

growths equivalent in size to one humanmammary lobule.

There has been no evidence of the generation of large

mammary ducts in any in vivo or in vitromodel. Moreover,

only surrogate assays for self-renewal of putative human

mammary stem cells are available for experimentally

testing cell functions (Dontu et al., 2003; Eirew et al.,

2008).
Given these limitations, the current knowledge

regarding the identity of normal human mammary stem

cells is based on markers that associate with the highest

enrichment in stem-like functional properties, such as

the ability to differentiate along both luminal andmyoepi-

thelial lineages, branching morphogenesis in 3D culture,

and generation of outgrowths in xenotransplantation

experiments. Combinations of cell surface markers that

have been used to detect cell populations enriched in these

properties include CD49fhighEpCAMlow (Eirew et al., 2008;

Lim et al., 2009), CD73+CD90– (Roy et al., 2013), CD10+

(Keller et al., 2012), and CD49f+DLL1+DNER+ (Pece

et al., 2010). Functional properties used to identify stem

cells are high aldehyde dehydrogenase (ALDH) activity

(Ginestier et al., 2007) and the ability to survive and prolif-

erate in anchorage-independent conditions (Dontu et al.,

2003; Pece et al., 2010). Some of these markers (i.e.,

ALDH+ and CD49f+) correlate with poor clinical outcome

whenhighly expressed in breast tumors (Ali et al., 2011; Gi-

nestier et al., 2007), possibly because they also identify a

cancer stem cell population. Other stem cell markers vali-

dated in in vitro assays include SSEA4+ and CK14+CK19+

(Villadsen et al., 2007). All these phenotypes identify

heterogeneous cell populations that containmore differen-

tiated cells in addition to stem cells.

The combination of assays and markers listed above

have not led to a consensus regarding the identity and
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localization of human mammary stem cells (Visvader and

Stingl, 2014). To address this issue, we adopted an alterna-

tive, theoretical approach based on modeling mammary

morphogenesis. We utilized 1D cell-replacement rules as

well as computer-generated 3D fractals for modeling the

human mammary lobule. This approach allowed us to

formulate hypotheses for the localization of stem and pro-

genitor cells within the branching structure of the gland.

We compared predictions of these theoretical models

with the pattern of marker expression in situ, as deter-

mined by immunostaining of sections of normal breast.

Several proposed stem cell markers were co-expressed and

their localization in situ coincided with the predictions of

one of the models put forward in this study, in which

stem cells are primarily present in clusters at the growing

ends of intralobular branching ductules.

This analysis of adult stem cell localization in the context

of 3D architecture of the mammary lobule establishes

consensus regarding the identity of adult mammary stem

cell markers, and it proposes amodel of lobulemorphogen-

esis with implications for the cellular origin of breast

cancer.
RESULTS

Theoretical Models ofMammary Lobule Development

We set out to model mammary lobule development to

clarify the contribution of stem cells to breast morphogen-

esis. The models generated may have additional applica-

tions in histological studies of branched epithelia.

The tree-like structure of the human mammary gland

consists of lobules and extralobular ducts that collect into

big galactophore ducts (Figure S1A). Lobules are formed

of dichotomically branched ductules, the ends of which

form the alveoli filled with milk during lactation. Both

ducts and lobules are delineated by two layers of epithelial

cells: an inner layer of luminal cells and an outer layer of

myoepithelial cells. Mammary lobules are the dynamic

units of the normal adult breast, with a much higher

cellular turnover than the ducts. It is universally recognized

that the vastmajority of breast cancers originate within the

lobule rather than in the large extralobular ducts (Guster-

son et al., 2005; O’Malley et al., 2011). For these reasons,

we focused on modeling the developing mammary lobule.

We initially generated 1D cell-based models of lobule

development with replacement rules for each dividing

cell. We assumed that cellular de-differentiation is not a

common phenomenon in the normal adult breast tissue,

that cellular differentiation is accompanied by a progres-

sive reduction in proliferative potential, and that termi-

nally differentiated cells do not proliferate. For simplicity,

we neglected naturally arising noise in cell division and
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performed a deterministic parallel replacement of each

cell with its two daughters at each generation. Under these

assumptions, several theoretical models of lobule develop-

ment can be formulated based on the type of cell divisions

that stem cells undergo and based on the spatial orienta-

tion of cell progeny relative to the mother cell and the

parental duct.We use the term stem cell for themost undif-

ferentiated cell type in the lobule, although we recognize

that this may be a primitive type of progenitor cell. All

other cells that can proliferate are termed progenitor cells.

The fate choices taken into account for stem cell divisions

were as follows: (1) asymmetric self-renewal or differentia-

tion, (2) high or low rate of entering the cell cycle from

quiescence, and (3) distal or proximal orientation of

the more undifferentiated progeny relative to mother cell

and parental duct (Figure S1C; Supplemental Experimental

Procedures).

Combinations of these fate choices generated eight

different models for lobule growth that differed in rate of

growth and differentiation, as well as in localization and

representation of stem cells within the developing lobule.

In Figure 1, we show two examples of different outcomes

in cell disposition within the lobule generated by different

combinations of cell fate decision. All of the eight models

are shown in Figure S1D. Two additional cell fates were

also modeled, i.e., symmetric self-renewal of stem cells

accompanied by asymmetric division of progeny (example

shown in Figure S1E) and symmetric cell divisions of pro-

genitor cells (example shown in Figure S1F). Other combi-

nations including these cell fates are not presented here

because the outcome cannot be distinguished from the

models shown in Figure S1D, being different only in

growth rate. For the simplicity of diagrams, only the

luminal cell layer is shown. The myoepithelial layer is sup-

posed to be generated from stem cells in the same direction

as luminal cells. It is formed of fewer, longer cells with uni-

form morphology and marker expression.

We compared the predictions of the models shown

in Figures 1 and S1 with observations of distribution of

markers for proliferation and lineage differentiation, as

well as the estrogen receptor (ER) in mammary lobules in

sections through normal breast tissue. ER+ cells contain

early progenitor cells according to several studies (Honeth

et al., 2014; Keller et al., 2012; Shehata et al., 2012).

Whereas lineage differentiation markers (e.g., CD10,

EpCAM, SMA, and cytokeratins 18 and 19) have a uniform

distribution in the lobule, proliferation markers (e.g.,

MCM2 and Ki67) and ER are present in scattered cells or

in clusters of cells across lobules (Figure S2; Santagata

et al., 2014). The majority of the models we generated pre-

dicted a continuous gradient of proliferation and differen-

tiation along the growing lobule (see examples in Figures

1A and S1D). If lobule development would follow one of



Figure 1. Examples of 1D Theoretical
Models of Lobule Development Based on
Cell Fate Decisions of Stem Cells
These models predict the localization and
representation of stem cells within the
developing lobule, rate of growth, as well as
differentiation and proliferation patterns.
Two examples are shown. More models are
shown in Figure S1D. Each line indicates one
generation of cell divisions. Colors of cells
indicate differentiation status and numbers
on cells indicate if they are identical
daughters. The 2D trees to the right show
cell disposition in the branching lobule.
(A) A model where stem cells undergo asym-
metric self-renewal at a low rate of division,
with proximal orientation of the most un-
differentiated progeny cell (model A1B1C2 in
Figure S1D). Thismodel predicts a continuous
gradient of proliferation and differentiation
along the growing lobule, with the most
undifferentiated cells concentrated at the
base of the developing structure.
(B) A model where stem cells undergo
asymmetric self-renewal at a high rate of
division, with distal orientation of the most
undifferentiated progeny cell (model A1B2C1
in Figure S1D). This model predicts a repeti-
tive pattern of proliferation and differentia-
tion along the growing lobule, with the most
undifferentiated cells present at the leading
edge as well as at branching points.
See also Figures S1 and S2.
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these models, differentiation markers would not have a

uniform distribution and proliferation markers would be

more frequent either in the central, larger ductules of the

lobule or in the smallest ductules at the periphery of the

lobule. Such patterns were not observed by us in tissue

sections immunostained for MCM2 (Figure S2) and have

not been reported elsewhere. Only two of the models in

Figure S1D predicted repetitive patterns of proliferation

and differentiation along the developing lobule, namely

models A1B2C1 (also presented in Figure 1B) and A1B2C2.

Co-localization of Proposed Stem Cell Markers in

Normal Breast Epithelium In Situ

To investigate how the predictions of themodels presented

above fit with observations regarding localization of stem

cells in the breast epithelium in vivo, we analyzed the

expression of putative stem cell markers in situ. It is impor-

tant to note that mammary epithelial cell populations are

heterogeneous with respect to the expression of markers

currently used to identify stem or progenitor cells. Presum-

ably, these markers are downregulated in a continuum
during differentiation of stem cells into immediate early

progenitor cells and then more mature progenitor cells.

One would predict that markers associated with high pro-

liferation potential in functional assays would co-localize

in the same lobular region, rather than in the same cells.

Studies employing flow cytometry analysis cannot detect

this juxtaposition.

We performed immunohistochemistry (IHC) on normal

breast sections for several proposed stem cell phenotypes

described in the Introduction. For the ALDH phenotype,

we assessed the expression of ALDH1A1 and ALDH1A3,

which are the two isoforms that constitute the

ALDEFLUOR+ population in normal breast (Honeth et al.,

2014). We also immunostained for CD44 and CD24

because the CD44+CD24� phenotype has been shown to

enrich for breast cancer stem cells. The same phenotype

has been used as a surrogate marker of normal stem/pro-

genitor cell in the human breast (Choudhury et al., 2013;

Shipitsin et al., 2007). Individual staining patterns of these

phenotypes are shown in Figure S3. As described in previ-

ous reports (Park et al., 2010; Santagata et al., 2014),
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Figure 2. Putative Stem Cell Markers Co-localize in the Normal Breast Epithelium
(A) Staining for putative stem cell phenotypes on consecutive sections from normal breast. Pictures show an area with overlap among
CD44+, SSEA4+, CK14+CK19+, and ALDH1A1+ phenotypes. CD49f is not expressed in this area. Representative example from six different
mammoplasties is shown.
(B) Quantification of other marker phenotypes in all ALDH1A1+ cell clusters (n = 61) across six different mammoplasty samples, showing
high co-localization of ALDH1A1+, SSEA4+, and CK14+CK19+ phenotypes. EpCAM and CD44 were expressed in about two-thirds and one-
third of the ALDH1A1+ cell clusters, respectively, while CD49f and ALDH1A3 were never expressed in these cell clusters. Bars represent
mean percentage of each marker presence in the ALDH1A1+ islands, across the six samples, ± SEM.

(legend continued on next page)
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EpCAM,CD10, CD49f, andCD44were present throughout

the entire epithelial tree: EpCAM was present in the

luminal layer, CD10 in the basal layer, CD44 primarily in

the basal layer, and CD49f in both luminal and basal layers.

CK14 was present in the entire basal layer in large and sec-

ondary ducts and infrequently in the luminal layer in the

lobules. CK19 was present in almost all cells of the luminal

layer. CD24 was present in parts of the epithelium, in the

apical membrane of intralobular luminal cells. It was

detected only in a subset of breast samples, as previously

described (Park et al., 2010). When CD24 was detectable,

CD44+CD24� cells represented the majority of the

CD44+ cell population. CD49f+EpCAM� cells were detect-

able reliably only in fluorescent staining, and they repre-

sented an infrequent population of cells localized in the

basal layer of secondary ducts. ALDH1A3 was present in

the luminal layer of extralobular ductules and larger ducts.

ALDH1A1, SSEA4, and CK14+CK19+ were present in

distinct clusters of cells representing a minority of the

intralobular epithelium.

To determine possible overlaps among these phenotypes,

we stained a series of consecutive sections from six

different reduction mammoplasties (Figures 2A and S4).

Furthermore, analysis of pairs of markers was done on sam-

ples from additional patients. Overall, a total of 18 samples

were used; each combination of markers was analyzed in

at least nine different samples. Clinical characteristics of

the patients are presented in the Supplemental Experi-

mental Procedures. We detected a strikingly clear overlap

among staining patterns for ALDH1A1+, SSEA4+, and

CK14+CK19+ in all the samples analyzed (Figures 2A and

S4). To quantify this co-localization, we identified

ALDH1A1+ areas across sections from the consecutively

stained samples and analyzed the rest of the markers in
(C and D) Double IF staining for ALDH1A1 together with SSEA4 and CD
(D) in distinct cell clusters. Representative examples from stainings o
shown.
(E) Triple IF staining for ALDH1A1 (stained with AlexaFluor647 and d
and CK19 (red, shown separate to the far right) illustrating overlap
example from stainings of six different samples is shown.
(F and G) Schematic and quantitative overlap of the ALDH1A1+, SSEA
number of additional marker phenotypes co-expressed in ALDH1A1+ a
number of additional marker phenotypes positive in ALDH1A1+ areas
(H) Triple IF staining for ALDH1A1 (stained with AlexaFluor647 and de
and EpCAM (green), illustrating the lack of overlap between ALDH1
sometimes be expressed in close proximity, they are not expressed i
illustrated by the far right picture showing EpCAM staining separate
ALDH1A1 (bottom, far right). Representative examples from staining
(I) Double immunofluorescent staining for ALDH1A1 and CD10 showing
few, CD10+ myoepithelial cells (arrow), while high level CD10+ m
Representative example from stainings of four different samples is sh
Scale bar, 100 mm in (A) and 50 mm in (E–I). Blue nuclear staining i
See also Figures S3 and S4.
the same areas on consecutive sections (Figure 2B).

SSEA4+ and CK14+CK19+ staining was detected in 83%

and 69% of the ALDH1A1+ areas, respectively. CD44 was

present in 38% of these areas, at a higher level compared

to the surrounding epithelium and in a luminal position.

In the rest of the mammary epithelium tree, CD44 was ex-

pressed ubiquitously in the basal layer. SSEA4 was detected

in distinct clusters of cells in cytoplasmic location. These

cells also expressed ALDH1A1. Additionally, SSEA4 was de-

tected as an apical luminal staining in a minority of the

samples (Figure S3C). This apical staining did not overlap

with the expression of ALDH1A1.

The co-expression of these markers was confirmed using

double and triple immunofluorescence (IF) stainings on at

least four different samples (Figures 2C and 2D). Further

analysis of ALDH1A1+, SSEA4+, CD44+, and CK14+

CK19+ co-expression showed that, in 73% of the

ALDH1A1+ areas, at least two of the other three pheno-

types also were expressed (Figures 2F and 2G).

Cells with the phenotypes ALDH1A3+ or CD49fhigh

EpCAMlow were present exclusively in extralobular ducts.

These two phenotypes did not overlap with each other or

with the ALDH1A1+, SSEA4+, or CK14+CK19+ markers,

which were present within the mammary lobule. Triple IF

staining for CD49f/EpCAM/ALDH1A1 showed no overlap

between CD49fhighEpCAMlow and ALDH1A1+ cells (Fig-

ure 2H). CD49f and ALDH1A1 also appeared to be segre-

gated (Figures 2A, 2B, 2H, and S4). Similar findings

regarding expression of CK14, CK19, and CD49f were

reported in a recent study (Santagata et al., 2014).

Because this study focused on the mammary lobule and

because ALDH1A1 used as a single marker detects the areas

of overlapping stem cell markers present in the lobule, we

used ALDH1A1 to identify and further characterize these
44, respectively. ALDH1A1 co-localizes with SSEA4 (C) and CD44high

f four (SSEA4) and seven (CD44) different samples, respectively, are

etected in the far red filter, shown in red for clarity), CK14 (green),
of these three markers in distinct clusters of cells. Representative

4+, CK14+CK19+, and CD44+ phenotypes. The letters in (F) indicate
reas. Bars in (G) represent mean percentage of areas with indicated
, across six samples, ± SEM.
tected in the far red filter, shown in green for clarity), CD49f (red),
A1+ and CD49fhigh phenotypes. Although ALDH1A1 and CD49f can
n the same cells (top). EpCAM also was expressed in this area, as
ly. The CD49fhighEpCAMlow cells in the basal layer are negative for
s of six different samples are shown.
that, in the areas where ALDH1A1 is expressed, there are no, or very

yoepithelial cells can be seen in neighboring acini (arrowhead).
own.
n fluorescence pictures is DAPI.
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Figure 3. ALDH1A1+ Cells Are Predomi-
nantly Quiescent
(A) Double immunostaining for ALDH1A1
(red) and MCM2 (brown) in normal breast
epithelium showing that these markers are
rarely co-localized in the same cells (left:
arrow, ALDH1A1+ cells; arrowhead, MCM2+
cells). Rare ALDH1A1low cells positive for
MCM2 can be detected (right: arrowhead).
Representative examples from stainings of
five different samples are shown.
(B) Double IF stainings for ALDH1A1
and p27 showing co-localization of these
markers. Representative example from
stainings of six different samples is shown.
(C) Consecutive sections from a mammo-
plasty sample showing ALDH1A1 (red) ex-
pressed at the distal end of a small growing
lobule. Double stainings with MCM2 (left)
and p27 (middle) confirm patterns seen in
(A and B).
Scale bar, 50 mm in (A and B) and 100 mm
in (C).
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areas. Moreover, we previously found that knockdown of

ALDH1A1 impairs mammosphere formation and branch-

ing morphogenesis of mammary cells in 3D cultures (Hon-

eth et al., 2014).

The areas where ALDH1A1was expressed were character-

ized by a less organized bilayer structure, often with no

clear lumen, co-localization of basal (CK14, CK5/6) and

luminal (CK19) cytokeratins in the same cells (Figures 2A

and S4), and often lower expression of EpCAM and

CD10 (Figures S4 and 2I) compared to the surrounding

epithelium. Further characterization using markers for

proliferation (Ki67, MCM2) and cell-cycle arrest (p27) indi-

cated that these areas were mainly resting or quiescent

(Figure 3).

Generation of a 3D Fractal Model of the Mammary

Lobule

To better elucidate the localization of stem cell markers in

the 3D architecture of the mammary lobule, we utilized

computer-generated 3D fractal models and compared

virtual sections with equivalent immunostained tissue

sections (Figure 4). The fractal model was established as

described in the Supplemental Experimental Procedures

and was based on parameters measured in tissue sections

in situ, including diameter and circumference of ductules,

length of ductules (in micrometer and in number of cells),

the ratio between lengths of consecutive branches, the

ratio between radii of consecutive branches, and angles of

branching. The model is dynamic and interactive; parame-

ters can be changed to include different measurements.
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Russo and colleagues have classified lobules based on size

and morphology (Russo et al., 1992) into small, immature

type 1 (L1), larger more developed type 2 (L2), and the

largest and most mature outside pregnancy, type 3 lobules

(L3) (see Figures S1A and S1B). For fitting the model, sec-

tions through fractals were compared to consecutive tissue

sections through L1, L2, and L3, with respect to maximum

diameter of the fractal tree/lobule; total number of ductule

sections at maximum diameter; and shape, size, and

pattern distribution of ductules in sections through the

fractal tree. Models that included angles of branching at

which ductules contacted each other or at which the

ductule disposition was different from that observed

in situ were eliminated (i.e., center of lobule with lower

or higher density of ductules than observed in tissue sec-

tions or longitudinal sections in addition to cross-sections

in a pattern not seen in tissue sections). We found

parameters and models that met all these criteria (Figures

4 and S5; Supplemental Experimental Procedures).

A link to download the fractal model is provided in

the Supplemental Experimental Procedures together with

instructions on how to use it.

3D Localization of StemCellMarkers in theMammary

Lobule

To better define the localization of ALDH1A1+ cells within

the 3D structure of lobules, we compared virtual sections

through fractal trees with breast tissue sections (Figure 5A).

ALDH1A1+ cells appeared to be present at branching

points and ends of ductules, in agreement with the model



Figure 4. Fractal Models of Mammary
Lobules with Virtual Sections in Compar-
ison to Real Tissue Sections
(A) 3D trees generated by fractal modeling,
representing mammary lobules with 6, 8,
and 12 branching generations.
(B) Virtual sections through the fractal trees
shown in (A). The sectioning plane is indi-
cated by the blue line in (A).
(C) Real sections through normal breast
lobules, corresponding to the fractal sec-
tions shown in (B) (H&E staining). Scale
bar, 100 mm.
See also Figure S5.
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shown in Figure 1B (model A1B2C1). This is consistent

with observations in the mouse mammary epithelium,

where stem cells are positioned at the growing ends of

ducts, in the so-called terminal end buds, which are also

the nodes of subsequent branching (Kenney et al., 2001).

Furthermore, evidence from a number of studies (Mani

et al., 2008; Scheel et al., 2011) shows that stem cells

from the normal mammary epithelium can undergo

epithelial to mesenchymal transition, which enables

them to migrate and invade in the surrounding matrix.

All these observations are also consistent with a distal loca-

tion of stem cells at the growing ends of ductules, rather

than proximally, at the base of the lobule. However, lobular

development occurs through simultaneous proliferation in

the entire structure; therefore, lobular or ductal stem cells

may be seen in a proximal position, at branching points,

and at the distal ends of ductules (Ewald et al., 2008; Villad-

sen et al., 2007).

Representation of Stem Cell Markers Correlates with

Lobule Developmental Stage

One of the predictions of the models presented above is

that L1 is enriched in stem cells. Findings from Russo’s

group show that a high representation of L1 is present in

nulliparous women compared to parous women and in

women with higher susceptibility to breast cancer (Russo

et al., 2001). We analyzed patterns of ALDH1A1 staining
in relation to lobule development as described by Russo

and colleagues (Russo et al., 1992). Briefly, lobule classifica-

tion was based on the number of ductules in cross-section

and the number of cells per ductule. The lobule classifica-

tion also was validated by analysis of stromal/epithelial ra-

tio and morphology in consecutive sections. The software

described above additionally was utilized for the examina-

tion of lobule sections made at an angle different than 90�.
We analyzed the total numbers and percentages of

ALDH1A1+ cells in each lobule on tissue sections from 18

different women (11–110 lobules counted per section). Ac-

curate assignment of sections to a lobule type was verified

by analysis of consecutive sections that covered the entire

thickness of the lobule. We found ALDH1A1+ cells pre-

dominantly in smaller lobules (Figures 5B and 5C); the per-

centage of ALDH1A1+ cells was significantly lower in L2

and L3 compared to L1 (p < 0.001; Figure 5D). The data

for each individual sample analyzed are presented in Fig-

ure S6 and show that, in the majority of samples, the per-

centage of ALDH1A1+ cells was consistently higher in L1

compared to L2 and L3. This finding suggests that the

correlation between L1 representation in the mammary

gland and breast cancer risk described by Russo and col-

leagues may be due to the presence of a higher number of

stem/progenitor cells.

To directly investigate possible correlations between

the size of stem/progenitor cell population and parity, we
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Figure 5. Representation of ALDH1A1+
Cells Is Higher in Immature Mammary
Lobules
(A) Localization of ALDH1A1+ cell in the
mammary lobule based on comparison of
virtual sections with equivalent immuno-
stained tissue sections. Arrows, ALDH1A1+
areas; brown staining, ALDH1A3 (upper
left).
(B) In situ detection of ALDH1A1 (red or
red-brown) in lobule types 1–3. Pictures
show examples of representative lobules of
each type. Arrow indicates rare ALDH1A1+
cells in lobule type 3. Scale bar, 100 mm.
Representative examples from 18 different
mammoplasty samples are shown.
(C) Scatter plot with number of ALDH1A1+
cells in each lobule section plotted against
the total cell number in the same lobule.
Data combined from 18 different patient
samples. Total number of lobules analyzed
is 853.
(D) Percentage of ALDH1A1+ cells in lobule
types 1–3. Each dot represents one lobule.
Error bars represent mean ± 95% confidence
interval. P values between groups were
calculated using one-way ANOVA with
Tukey’s multiple comparisons test.
See also Figure S6.
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compared the representation of ALDH1A1+ cells in the

mammary epithelium of nulliparous women with that of

parous women. We found no significant difference in the

percentage of ALDH1A1+ cells in the epithelium of nullip-

arous women compared to that of parous women, when

analyzing all the samples together (Figure 6A). Because

the samples came from a heterogeneous patient popula-

tion, we carried out the same analysis separately in samples

from prophylactic mastectomy in BRCA1/2 mutation car-

riers and the rest of mammoplasty samples (non-BRCA).

Overall there was a higher representation of ALDH1A1+

cells in the mammary epithelium of BRCA mutation car-

riers compared to non-carriers, but the difference was not

statistically significant (Figure 6B). When analysis was per-

formed separately for different lobule types, however, a
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significantly larger percentage of ALDH1A1+ cells was

seen in L1 from BRCA1/2 mutation carriers compared to

non-carriers (Figure 6C). Similarly, a considerable enrich-

ment in ALDH1A1+ cells was seen in L1 from nulliparous

women compared to parous women when BRCA1/2 muta-

tion carriers and non-carriers were analyzed separately

(Figures 6D and 6E). ALDH activity assessed by the

ALDEFLUOR assay was not significantly different in sam-

ples from nulliparous and parous women, or in BRCA1/2

mutation carriers and non-carriers (data not shown),

possibly due to the contribution of other isoforms to this

activity (Honeth et al., 2014).

We have demonstrated previously that cells with ALDH

activity contain the cells capable of mammosphere forma-

tion (Ginestier et al., 2007) and that ALDH1A1 is critical for



Figure 6. Immature Mammary Lobules of Nulliparous Women or BRCA1/2 Mutation Carriers Are Enriched in ALDH1A1+ Cells
(A) Comparison of percentage of ALDH1A1+ cells in all samples stratified on parity showed no significant difference between samples from
nulliparous women and those from parous women. Bars represent mean percentages of ALDH1A1+ cells across the indicated number of
samples ± SEM.
(B and C) Comparison of percentage of ALDH1A1+ cells in all samples stratified on BRCA status showed no significant difference between
samples from women with and without confirmed mutations in BRCA1 or BRCA2 (B). Analysis of individual lobules from 18 women showed a
significant increase in ALDH1A1 representation in lobule type 1 in samples from BRCA1/2 mutation compared to samples from non-BRCA
carriers (C). Bars represent mean percentage of ALDH1A1+ cells ± SEM.
(D and E) Comparison of percentage of ALDH1A1+ cells in lobule types 1–3 in samples from women without (D) and with (E) BRCA1/2
mutations, respectively, showed a significantly higher percentage of ALDH1A1+ cells in lobule type 1 from nulliparous women compared
to those from parous women in both BRCA carriers and non-carriers.
(F) Comparison of mammosphere-forming ability in dissociated mammary epithelial cells from nulliparous and parous women, showing
higher sphere formation in samples from the latter group. Analysis was done on samples from non-BRCA carriers.
P values were calculated using Mann-Whitney U test (A, B, and F) or one-way ANOVA with Sidak’s multiple comparisons test (C–E).
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this sphere formation (Honeth et al., 2014). We therefore

compared the efficiency of mammosphere formation in

primary culture of mammary epithelial cells from nullipa-

rous versus parous women (non-carriers of BRCA1/2

mutations). A significantly higher ability to formmammo-

spheres was found in the samples from nulliparous women

compared to those from parous women (Figure 6F).

We conclude that parity changes the cellularity of the

mammary epithelium by promoting differentiation and

reducing the number of stem/progenitor cells. The imma-

ture mammary lobules of nulliparous BRCA1/2 mutation

carriers show a 10-fold enrichment in ALDH1A1+ cells
compared to those of nulliparous non-carriers (Figures 6D

and 6E). This observation suggests a profoundly altered

cell differentiation associated with BRCA1/2 mutations.
DISCUSSION

The stem cell model of cancer development posits that

stem and progenitor cells present in adult tissues constitute

themain target of malignant transformation. Additionally,

it proposes that intra- and inter-tumoral heterogeneity can

be attributed in part to the molecular features contributed
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by the cell of cancer origin, superimposed on aberrant

differentiation and genomic instability. Experimental evi-

dence supporting this concept in the context of breast can-

cer has been provided by studies from several groups (Keller

et al., 2012; Molyneux et al., 2010). Recent findings by San-

tagata and colleagues showed that classification of breast

tumors based on cell types found in the normal breast

reflect differences in patient survival (Santagata et al.,

2014). The clinical implications of these models are pro-

found. However, controversies regarding identity of the

normal humanmammary stem cells and their relationship

with the cells of cancer origin constitute a major roadblock

in validating these models and translating their concepts

into clinical applications.

We argue that definitive experimental proof for the exis-

tence and identity of human mammary stem cells cannot

be produced with the current experimental tools. In this

study we developed a new, complementary approach to

address some of these challenges. We utilized theoretical

modeling together with plausible combinations of cell

fate decisions to examine the distribution of stem cells in

different settings, and we compared the predictions of

the generated models with our experimental observations.

We used a combination ofmarkers withwell-defined dispo-

sition in the ductal and lobular regions of the mammary

tree to compare predictions of the theoretical models

with the observations in the human normal breast. Addi-

tionally, we utilized proliferation markers, under the

assumption that proliferation is more frequent in the

compartment of undifferentiated progenitor cells, as is

the case in the intestinal and epidermal epithelia (Pinto

andClevers, 2005). Only a subset of growth ruleswas found

to be consistent with the known 1D and 3D patterns of

marker expression in normal human mammary lobules.

The model, consistent with observed patterns of marker

expression, combined the cell fate choices of asymmetric

self-renewal, high rate of stem cell division, and distal

orientation of the more undifferentiated cell progeny.

The outcome was a repetitive gradient of differentiation

in the growing lobule, with proliferating cells all along

the developing structure and pools of stem cells at branch-

ing points and the tip of the developing structure. This

repetitive pattern is consistentwith a fractal-like, self-reiter-

ative structure of the lobule, indicated by in situ measure-

ments (Russo et al., 1992).

We generated an interactive fractal model of mammary

lobules based on parameters measured in histological sec-

tions. The fractal tree can be virtually sectioned at arbitrary

depth and angle and then compared to breast tissue sec-

tions. This model can quantitate the number of branching

generations, the total number of cells in a lobule, and iden-

tify different generations of ductules present in a section.

We utilized this model to identify the location of stem
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cell markers that were present in small clusters of cells scat-

tered throughout the mammary epithelium, in apparently

random fashion. Several of the stem cell markers used were

present in such small clusters, representing a minority of

the total cells. An important finding of this study is that

the majority of stem cell markers investigated, namely

ALDH1A1+, SSEA4+, CK14+CK19+, and CD44high, co-

localize. This provides consensus among various published

studies (Choudhury et al., 2013; Ginestier et al., 2007; Shi-

pitsin et al., 2007; Villadsen et al., 2007). Importantly, the

cells in which these markers co-localize have both luminal

and basal characteristics and are situated at very distinct

positions in the 3D structure of the lobule at the growing

ends of ductules, which represent future points of branch-

ing. This is particularly clear when comparing the virtual

and histological sections. Our study underscores the neces-

sity of moving beyond the limited definitions of basal and

luminal localization. As Gusterson and colleagues convinc-

ingly discuss, it is important to understand the distinction

between basal and luminal phenotypes versus basal and

luminal localization of mammary epithelial cells, and the

distinction between basal cells and myoepithelial cells

(Gusterson and Stein, 2012).

Interestingly, ALDH1A1+ cells were predominantly

quiescent, the majority of them expressing the cell-cycle

arrest marker p27 and only very rarely expressing the pro-

liferation marker MCM2. Consistent with these findings,

enhanced expression of p27 recently has been demon-

strated in CD44+ progenitor population in the normal

breast, and the p27+ cell population was found to be

expanded in nulliparous breast and correlated with breast

cancer risk (Choudhury et al., 2013).

Based on these results, the model of morphogenesis we

propose is one inwhich a pool of quiescent stem cells is pre-

sent at the leading edge of growing ductules in the lobule.

These cells generate progeny that remain proximal to the

parental duct, allowing stem and progenitor cells to

maintain their location at the growing edge. Dichotomic

branching appears to occur within the cell population in

terminal or subterminal positions at the tip of ductules af-

ter which the ductule formation is re-iterated. Synchro-

nous growth in multiple generations of branches would

intrinsically generate smaller and smaller ductules.

Another finding was that the candidate stem cell pheno-

types that never co-localized with the set enumerated

above, ALDH1A3+ and CD49fhighEpCAMlow, are present

exclusively in the extralobular ducts. It is possible that

the human breast epithelium, unlike the mouse mammary

epithelium, is sustained by more than one distinct popula-

tion of stem or progenitor cells. Ductal progenitors may

be active primarily before and around puberty while

lobular progenitors may sustain the growth of lobules in

adult life, including pregnancy. The stem cell population
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described by Villadsen and colleagues (Villadsen et al.,

2007), present at the emergence of secondary ducts and

lobules from big ducts, may be the cell pool that generates

the lobular stem cells, which will subsequently move away

from the parental duct. Our findings indicate that these

lobular stem cells are ALDH1A1+. The change in expression

of cytokeratins and ALDH isoforms between ducts and lob-

ules is consistent with that seen during developmental

patterning in other tissues. We focused on stem cells pre-

sent in the lobules, given the implications for cancer origin.

Association of ALDH activity or CD44 with functional or

molecular cancer stem cell properties is also one of the

most consistently reported in the literature. Several studies

established a link between expansion of the ALDH1A1 cell

population and cancer risk or cancer initiation (Ali et al.,

2011; Ginestier et al., 2007; Khoury et al., 2012).

Numerous studies demonstrate that pregnancy before

35 years of age has a protective effect against breast cancer

development (Clavel-Chapelon and Gerber, 2002). Russo

and colleagues showed that the nulliparous breast contains

predominantly L1 and L2, whereas the parous breast con-

tains mostly L3. One of the explanations proposed for

this correlation between parity and breast cancer risk was

the persistence and/or expansion of the stem cell popula-

tion in nulliparous women, as opposed to a decrease of

this cell population with each pregnancy in parous women

(Russo et al., 1999). Our findings that ALDH1A1+ cells are

considerably enriched in immature L1 compared to L2

and L3 support such a correlation between long persistence

of undifferentiated cells and risk of malignant transforma-

tion. Moreover, a significant difference was seen in the

cellularity of immature lobules in nulliparous versus parous

women and in patients that carry BRCA1 or BRCA2

mutations compared to non-carriers. These findings are

consistent with previous reports from others and us, point-

ing to abnormalities in cellular differentiation associated

with BRCA1/2 mutations, in addition to defects in DNA

repair (Lim et al., 2009; Liu et al., 2008). Similar conclu-

sions were reached by Kuperwasser and colleagues in a

study using methods of analysis different from the ones

we utilized (Arendt et al., 2014).

In conclusion, this study proposes a model of mammary

lobule morphogenesis based on location and fate choices

of stem and progenitor cells, which is consistent with the

1D and 3D patterns of markers seen in the normal breast

tissue. Our results regarding localization of stem cell

markers in a 3D context reconcile controversies on mam-

mary stem cell markers, and they underscore the impor-

tance of moving beyond 2D considerations of stem cell

localization (basal versus luminal) to tree-like 3D lobular

structure. Our fractal model of mammary lobule morpho-

genesis allows such a 3D analysis. It can be instrumental

in a large variety of in situ studies, it can facilitate character-
ization of the mammary stem cell niche, and it can simu-

late development of premalignant lesions in silico.
EXPERIMENTAL PROCEDURES

Modeling of Mammary Lobule Formation
Modeling of mammary lobule formation based on theoretical

and experimental parameters was done using a cell-based and

a fractal-based approach described in detail in the Supplemental

Experimental Procedures. The fractal model can be down-

loaded from the following link: https://github.com/FedericoV/

FractalMammaryLobule and instructions on how to use it can be

found in the Supplemental Experimental Procedures.

Processing of Breast Tissue Samples
Normal breast tissue was obtained with informed consent from

patients undergoing mammoplasty for aesthetic or prophylactic

reasons, under protocols approved by Guy’s Research Ethics Com-

mittee in agreement with the Human Tissue Act. The tissue was

processed as previously described (Ginestier et al., 2007). Pieces

of tissue were fixed in formalin for 24–48 hr before being processed

and embedded in paraffin.

Immunostainings
Paraffin-embedded sections (3–4 mm) of normal human breast

epitheliumwere deparaffinized in xylene and rehydrated in graded

alcohol. Antigen retrieval was achieved by heating slides in pH 6 or

pH 9 buffer (Vector Laboratories) according to recommendations

or by enzymatic digestion with trypsin.

Single anddouble IHCwasperformedwith EnVisionHRPRabbit/

Mouse (DAB+) andEnVisionG2Doublestain SystemRabbit/Mouse

(both from Dako), respectively, according to recommendations,

except for ALDH1A3 that was detected using peroxidase-conju-

gated donkey anti-goat secondary antibody (Jackson Laboratory)

followed by VECTASTAIN Elite ABC Kit (Vector Laboratories) and

3,3-diaminobenzidene (DAB). Primary antibodies used are summa-

rized in the Supplemental Experimental Procedures.

For double and triple IF stainings, sections were blocked with

10% donkey serum for 1 hr. Staining with primary antibodies

was done in 10% donkey serum overnight at 4�C. Secondary anti-

bodies (conjugated with AlexaFluor-488, -555, or -647, Molecular

Probes) were incubated in 10%donkey serum for 1 hr at room tem-

perature. Nuclei were counterstained with DAPI. All incubations

and washes were done in PBS with 0.1% Triton X-100.

Lobule Classification and Analysis of ALDH1A1

Representation
Lobules were classified as previously described (Russo et al., 1992)

into types 1–3 (L1–L3) on cross-sections of normal breast stained

with ALDH1A1 and hematoxylin. The number of ductules per

lobule was counted on scanned sections, and the lobules were clas-

sified as L1 if they contained %20 ductules, L2 if 21–60 ductules,

and L3 if >60 ductules. The percentages of ALDH1A1+ cells in

each lobule cross-section was determined by counting the number

of nuclei with surrounding positive staining and dividing by the

total number of nuclei.
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Mammosphere Culture
Mammosphere culture was performed as previously described

(Dontu et al., 2003), at a density of 20,000 viable cells/ml in pri-

mary culture. Counting of mammospheres was donemanually, af-

ter 7–10 days, in six-well plates under light microscope in at least

three wells for each condition.
Statistical Analysis
Data were analyzed using GraphPad Prism v6.0. Mann-Whitney U

test or one-way ANOVAwas performed to determine statistical sig-

nificance, unless otherwise stated. P values < 0.05 were considered

significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures and six figures and can be foundwith this article online

at http://dx.doi.org/10.1016/j.stemcr.2015.02.013.
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